

Status of the Transverse Single Spin Asymmetry of $p+p^{\uparrow} \rightarrow \eta + X$ at $\sqrt{s} = 200$ GeV

David Kleinjan
For the PHENIX Collaboration

Transverse Single Spin Asymmetry (A_N)

Definition of A_N: The ratio of the difference and the sum of the transverse **spin-dependent** differential cross-sections of a **certain interaction**, eg. inclusive hadron production (η mesons)

$$A_{N} = \frac{d \,\sigma_{\uparrow}(\phi) - d \,\sigma_{\downarrow}(\phi)}{d \,\sigma_{\uparrow}(\phi) + d \,\sigma_{\downarrow}(\phi)}$$

- A_N is an azimuthal, or "left-right" asymmetry
- See if there is a difference in the production of η mesons to the left-right in pp[↑] interactions.
- $Has A_N$ been measured before?

A_N by other experiments

 A_N of order 10⁻¹ observed in polarized hadronic collisions over wide range of energies since 1970s.

FNAL E704 Collaboration/Nuc Phys. B 510 (1998) 3-11

- STAR sees nonzero A_N for ηs (2006 Run at RHIC)
- PHENIX will attempt to measure ηA_N at $\sqrt{s} = 200 \text{GeV}$

Heppelmann, DIS 2009 Proceedings http://dx.doi.org/0.3360/dis.2009.195

Origin of A_N

Origin of A_N

Proton Structure

$$\frac{d^3\sigma^{\uparrow}(pp^{\uparrow}\rightarrow hX)}{dx_1dx_2dz}\propto q_1^{\uparrow}(x_1,k_{q,T})\cdot G(x_2)\times \frac{d^3\hat{\sigma}^{\uparrow}(q_iq_j\rightarrow q_kq_l)}{dx_1dx_2}\times FF_{q_{k,l}}$$

$$q_{i}^{\uparrow}(x_{1},k_{q,T})\cdot G(x_{2})\times$$

$$\frac{d^3 \hat{\sigma}^{\uparrow}(q_i q_j \rightarrow q_k q_l)}{dx_1 dx_2}$$

A_N Observables:

small spin dependence

fragmentation **function**

- "Transversity" quark-distributions and Collins fragmentation
 - Correlation between proton and quarkspin and spin dependent fragmentation

$$A_N \propto \delta q(x) \cdot H_1^{(\perp,<)}(z_2,k_2^2).$$

- Sivers quark distribution
 - Correlation between proton spin and transverse quark momentum

$$A_N \propto f_{1T}^{\perp q}(x, k_\perp^2) \cdot D_q^h(z)$$

MPC detector in PHENIX

- MPC is forward E.M.
 Calorimeter
 - Pseudorapidity ~ 3.1-3.9 North,-3.1-(-3.7) South
 - 220 cm from nominal interaction point
 - 2.2x2.2x18 cm³ PbWO₄ crystal towers

MPC detector in PHENIX

- MPC is forward E.M.
 Calorimeter
 - Pseudorapidity ~ 3.1-3.9 North,-3.1-(-3.7) South
 - 220 cm from nominal interaction point
 - 2.2x2.2x18 cm³ PbWO₄ crystal towers

MPC detector in PHENIX

- MPC is forward E.M.
 Calorimeter
 - Pseudorapidity ~ 3.1-3.9 North,-3.1-(-3.7) South
 - 220 cm from nominal interaction point
 - 2.2x2.2x18 cm³ PbWO₄ crystal towers
 - 2008 Run (p+p[†] at $\sqrt{s} = 200 \text{GeV}$) at RHIC
 - 5.2 pb⁻¹ integated luminosity
 - 45% vertical beam polarization

Extracting the η Meson Counts

$$M_{\eta} = 547 \text{ MeV/c}^2$$

Primary Decay Modes:

$$\eta \to \gamma + \gamma$$
 $\eta \to \pi^0 + \pi^0 + \pi^0$
 (39.3%)
 $\eta \to \pi^0 + \pi^0 + \pi^0$
 (32.5%)
 $\eta \to \pi^+ + \pi^- + \pi^0$
 (22.7%)

- Calculate invariant mass for cluster pairs
 - Use high energy cuts on clusters, cluster pairs
 - E_Cluster > 4.0 GeV
 - E_Pair > 20.0 GeV
- Two Data sets used
 - Minimum bias trigger
 - High energy cluster trigger
 - 4x4 tower sum > 20.0 GeV fires the trigger

Extracting the η Meson Counts

(Exemplary for one energy bin)

- How do we normalize out the background?
- Take Real Events/Mixed Events
 (S/B), and fit with constant, C
- Scaled Mixed Events = C*Mixed
- Raw Counts = Real Scaled

η Counts Minimum Bias

Real Events
Scaled Mixed Events
Raw Counts

- Clear Signal
- Correlated Background at 0.2-0.4 GeV
 - High energy π^0 Clusters (E > 20 GeV) merge, possibly producting jet correlations
 - Under investigation

η Counts Minimum Bias

Real Events
Scaled Mixed Events
Raw Counts

- Clear Signal
- Correlated Background at 0.2-0.4 GeV
 - High energy π^0 Clusters (E > 20 GeV) merge, possibly producting jet correlations
 - Under investigation

η Counts High Energy Cluster Trigger

- Clear Signal, improved S/B at higher energies
- Again, Correlated Background at 0.2-0.4 GeV
 - Shifts to the right as energy increases
- Investigate with Simulations

Estimated uncertainty in σA_N

$$\sigma A_N \sim \frac{\square}{pol} \times \frac{\blacksquare}{\sqrt{\square N}}$$

Estimated Error for zero asymmetry (=maximum error)

$$x_F = 2p_{log} / \sqrt{s}$$

- Beam Polarization P = 46%
- Factor of 2 comes from the use of both beams polarized
- Does not take into account background subtraction correction

Summary and Outlook

- Demonstrated capability of measuring η mesons in the PHENIX MPC for 0.2 $< x_F < 0.7$ in $\sqrt{s} = 200$ GeV p+p[†] collisions
- North and South Arms will provide consistency checks
- Tasks
 - Try to understand correlated background
 - Want to subtract the background asymmetry
 - Will look at how A_N behaves in X_F , p_T , and pseudorapidity.

